Deterministic Non-Autoregressive Neural Sequence Modeling by Iterative Refinement
نویسندگان
چکیده
We propose a conditional non-autoregressive neural sequence model based on iterative refinement. The proposed model is designed based on the principles of latent variable models and denoising autoencoders, and is generally applicable to any sequence generation task. We extensively evaluate the proposed model on machine translation (En↔De and En↔Ro) and image caption generation, and observe that it significantly speeds up decoding while maintaining the generation quality comparable to the autoregressive counterpart.
منابع مشابه
Iterative learning identification and control for dynamic systems described by NARMAX model
A new iterative learning controller is proposed for a general unknown discrete time-varying nonlinear non-affine system represented by NARMAX (Nonlinear Autoregressive Moving Average with eXogenous inputs) model. The proposed controller is composed of an iterative learning neural identifier and an iterative learning controller. Iterative learning control and iterative learning identification ar...
متن کاملAutoregressive Attention for Parallel Sequence Modeling
We introduce an autoregressive attention mechanism for parallelizable characterlevel sequence modeling. We use this method to augment a neural model consisting of blocks of causal convolutional layers connected by highway network skip connections. We denote the models with and without the proposed attention mechanism respectively as Highway Causal Convolution (Causal Conv) and Autoregressive-at...
متن کاملModified Maximum Likelihood Estimation in First-Order Autoregressive Moving Average Models with some Non-Normal Residuals
When modeling time series data using autoregressive-moving average processes, it is a common practice to presume that the residuals are normally distributed. However, sometimes we encounter non-normal residuals and asymmetry of data marginal distribution. Despite widespread use of pure autoregressive processes for modeling non-normal time series, the autoregressive-moving average models have le...
متن کاملSignal Prediction by Layered Feed - Forward Neural Network (RESEARCH NOTE).
In this paper a nonparametric neural network (NN) technique for prediction of future values of a signal based on its past history is presented. This approach bypasses modeling, identification, and parameter estimation phases that are required by conventional parametric techniques. A multi-layer feed forward NN is employed. It develops an internal model of the signal through a training operation...
متن کاملNon Linear Traffic Modeling of VBR MPEG-2 Video Sources
In this paper, a neural network scheme is presented for modeling VBR MPEG-2 video sources. In particular, three non linear autoregressive models (NAR) are proposed to model the aggregate MPEG-2 video sequence, each of which corresponds to one of the three types of frames (I, P and B frames). Then, the optimal mean-squared error predictor of the NAR model is implemented using a feedforward neura...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1802.06901 شماره
صفحات -
تاریخ انتشار 2018